为了解决现实世界应用需求的日益增长,知识密集型NLP(KI-NLP)的研究应通过捕获真正开放域环境的挑战:网络规模知识,结构缺乏,质量不一致,和噪音。为此,我们提出了一种新的设置,用于评估现有的KI-NLP任务,其中我们将背景语料库概括为通用Web快照。我们重新保证Kilt,最初为维基百科最初开发的标准Ki-NLP基准测试,并要求系统使用CCNet的子集 - 球体语料库 - 作为知识源。与维基百科相比,球体是较大的数量级,更好地反映了互联网上的全部知识。我们发现,尽管潜在的覆盖范围,规模挑战,结构缺乏,质量较低,来自领域的检索可以实现最先进的检索系统,以匹配和甚至优于基于Wikipedia的模型在几个kilt上任务 - 即使我们积极过滤看起来像维基百科的内容。我们还观察到Wikipedia的单一密集通道指数可以胜过稀疏的BM25版本,而在球体上尚不实现。为了促进进一步研究该领域,并尽量减少社区对专有黑匣子搜索引擎的依赖,我们将分享我们的指数,评估指标和基础设施。
translated by 谷歌翻译
当前有效的微调方法(例如,适配器,前缀调整等)通过培训一小组神经语言模型的额外参数进行优化的条件文本生成,同时冻结其余效率。虽然在某些一代任务中显示出强大表现,但它们不会概括所有一代任务。在这项工作中,我们表明可以提高基于迅速的条件文本生成,简单而有效的方法模拟了人类书面文本的话语结构建模。我们介绍了两个关键设计选择:首先,我们表明人写文本的更高级别的话语结构可以用前缀参数上的\ Textit {分层阻塞}建模,使得能够跨越输入和输出文本的不同部分,并产生更长度的输出几代人。其次,我们通过在网络上的不同层的前缀参数上引入\ texit {注意稀疏性}来提出稀疏的前缀调整,并分别学习SoftMax函数上的稀疏变换。我们发现稀疏的注意力使前缀调整能够更好地控制输入内容(突出事实),从而更有效地调整前缀参数。在各种文本生成任务上的实验表明,前缀参数的结构化设计可以实现可比的结果,以微调所有参数,同时即使在低资源设置中也表现出所有生成任务的标准前缀调整。
translated by 谷歌翻译
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dualencoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks. 1 * Equal contribution 1 The code and trained models have been released at https://github.com/facebookresearch/DPR.
translated by 谷歌翻译
How can we accurately identify new memory workloads while classifying known memory workloads? Verifying DRAM (Dynamic Random Access Memory) using various workloads is an important task to guarantee the quality of DRAM. A crucial component in the process is open-set recognition which aims to detect new workloads not seen in the training phase. Despite its importance, however, existing open-set recognition methods are unsatisfactory in terms of accuracy since they fail to exploit the characteristics of workload sequences. In this paper, we propose Acorn, an accurate open-set recognition method capturing the characteristics of workload sequences. Acorn extracts two types of feature vectors to capture sequential patterns and spatial locality patterns in memory access. Acorn then uses the feature vectors to accurately classify a subsequence into one of the known classes or identify it as the unknown class. Experiments show that Acorn achieves state-of-the-art accuracy, giving up to 37% points higher unknown class detection accuracy while achieving comparable known class classification accuracy than existing methods.
translated by 谷歌翻译
We present a neural technique for learning to select a local sub-region around a point which can be used for mesh parameterization. The motivation for our framework is driven by interactive workflows used for decaling, texturing, or painting on surfaces. Our key idea is to incorporate segmentation probabilities as weights of a classical parameterization method, implemented as a novel differentiable parameterization layer within a neural network framework. We train a segmentation network to select 3D regions that are parameterized into 2D and penalized by the resulting distortion, giving rise to segmentations which are distortion-aware. Following training, a user can use our system to interactively select a point on the mesh and obtain a large, meaningful region around the selection which induces a low-distortion parameterization. Our code and project page are currently available.
translated by 谷歌翻译
FSS(Few-shot segmentation)~aims to segment a target class with a small number of labeled images (support Set). To extract information relevant to target class, a dominant approach in best performing FSS baselines removes background features using support mask. We observe that this support mask presents an information bottleneck in several challenging FSS cases e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary source of features in generating super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS baselines. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves the performance by visible margins and allows faster convergence. Our codes and models will be publicly released.
translated by 谷歌翻译
Weakly-supervised object detection (WSOD) models attempt to leverage image-level annotations in lieu of accurate but costly-to-obtain object localization labels. This oftentimes leads to substandard object detection and localization at inference time. To tackle this issue, we propose D2DF2WOD, a Dual-Domain Fully-to-Weakly Supervised Object Detection framework that leverages synthetic data, annotated with precise object localization, to supplement a natural image target domain, where only image-level labels are available. In its warm-up domain adaptation stage, the model learns a fully-supervised object detector (FSOD) to improve the precision of the object proposals in the target domain, and at the same time learns target-domain-specific and detection-aware proposal features. In its main WSOD stage, a WSOD model is specifically tuned to the target domain. The feature extractor and the object proposal generator of the WSOD model are built upon the fine-tuned FSOD model. We test D2DF2WOD on five dual-domain image benchmarks. The results show that our method results in consistently improved object detection and localization compared with state-of-the-art methods.
translated by 谷歌翻译
In order to assist the drug discovery/development process, pharmaceutical companies often apply biomedical NER and linking techniques over internal and public corpora. Decades of study of the field of BioNLP has produced a plethora of algorithms, systems and datasets. However, our experience has been that no single open source system meets all the requirements of a modern pharmaceutical company. In this work, we describe these requirements according to our experience of the industry, and present Kazu, a highly extensible, scalable open source framework designed to support BioNLP for the pharmaceutical sector. Kazu is a built around a computationally efficient version of the BERN2 NER model (TinyBERN2), and subsequently wraps several other BioNLP technologies into one coherent system. KAZU framework is open-sourced: https://github.com/AstraZeneca/KAZU
translated by 谷歌翻译
Denoising diffusion models (DDMs) have led to staggering performance leaps in image generation, editing and restoration. However, existing DDMs use very large datasets for training. Here, we introduce a framework for training a DDM on a single image. Our method, which we coin SinDDM, learns the internal statistics of the training image by using a multi-scale diffusion process. To drive the reverse diffusion process, we use a fully-convolutional light-weight denoiser, which is conditioned on both the noise level and the scale. This architecture allows generating samples of arbitrary dimensions, in a coarse-to-fine manner. As we illustrate, SinDDM generates diverse high-quality samples, and is applicable in a wide array of tasks, including style transfer and harmonization. Furthermore, it can be easily guided by external supervision. Particularly, we demonstrate text-guided generation from a single image using a pre-trained CLIP model.
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译